Spatial characterisation of ryanodine-induced calcium release in mouse pancreatic acinar cells.

نویسندگان

  • Michael C Ashby
  • Ole H Petersen
  • Alexei V Tepikin
چکیده

In pancreatic acinar cells, agonists evoke intracellular Ca(2+) transients which are initiated in the apical region of these polarized cells. There are contradictory experimental data concerning Ca(2+) release from ryanodine receptors (RyRs) in the apical region. In the present study, we have used low doses of ryanodine to open RyRs leading to the release of Ca(2+) from intracellular stores. Ryanodine causes Ca(2+) release that is initiated in the apical region of the cell but is dependent upon functional inositol 1,4,5-trisphosphate receptors (IP(3)Rs). These results suggests that co-ordinated release from co-localized RyRs and IP(3)Rs underlies the increased sensitivity of the apical region to initiation of intracellular Ca(2+) transients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bile acids activate ryanodine receptors in pancreatic acinar cells via a direct allosteric mechanism.

The earliest critical event of pancreatitis is a long lasting high amplitude rise of intracellular Ca(2+) concentration of the acinar cell, which can be triggered by high concentration of bile acids. Although, Ca(2+)-release through ryanodine receptors (RyR) is involved in the process, the significance and the exact mechanism of bile acid's action on RyR has not been fully elucidated yet. There...

متن کامل

The ryanodine receptor is expressed in human pancreatic acinar cells and contributes to acinar cell injury.

Physiological calcium (Ca(2+)) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca(2+) signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca(2+) release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in ...

متن کامل

Dantrolene mitigates caerulein-induced pancreatitis in vivo in mice.

Acute pancreatitis is a painful, inflammatory disorder for which adequate treatments are lacking. An early, critical step in its development is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. This Ca(2+) release is modulated by the intracellular Ca(2+) channel the ryanodine receptor (RYR). We have previously shown that RYR inhibition reduces pathological intra-acinar proteas...

متن کامل

FK506 induces biphasic Ca2+ release from microsomal vesicles of rat pancreatic acinar cells.

The effect of the immunosuppressant drug FK506 on microsomal Ca2+ release was investigated in rat pancreatic acinar cells. When FK506 (0.1-200 microM) was added to the microsomal vesicles at a steady state of ATP-dependent 45Ca2+ uptake, FK506 caused a dose-dependent and a biphasic release of 45Ca2+. Almost 10% of total 45Ca2+ uptake was released at FK506 concentrations up to 10 microM (Km=0.47...

متن کامل

Elucidation of the ryanodine-sensitive Ca2+ release mechanism of rat pancreatic acinar cells: modulation by cyclic ADP-ribose and FK506.

The effects of cyclic ADP-ribose (cADPR) and the immunosuppressant drug FK506 on microsomal Ca2+ release through a ryanodine-sensitive mechanism were investigated in rat pancreatic acinar cells. After a steady state of 45Ca2+ uptake into the microsomal vesicles, ryanodine or caffeine was added. Preincubation of the vesicles with cADPR (0.5 microM) shifted the dose-response curve of ryanodine- o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 369 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2003